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Context

Figure 1 – Illustration taken 
from [2], highlighting the 
structure, grain evolution 
processes and observational 
constraints of protoplanetary 
discs.e) Erosion

Figure 3 – Experimental results from [5] showing erosion efficiencies of ~10-100 
(i.e. erosion could halt local dust coagulation before any other barriers).

Range of erosion 
efficiencies explored 
in this project using 
the DustPy package.

Standard DustPy 
implementation [6], 
which includes 
high-mass ratio 
collisions, but the 
erosion model 
assumes 𝜒 = 1.
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The first step of planet formation in the core accretion 
paradigm involves pair-wise growth of (sub)microscopic 
dust grains through a process known as dust 
coagulation [1].

Figure 2 – Diagrams illustrating the effects of erosion (with different efficiencies 𝜒) on dust grains.
§ a (left) – Impactors excavate at most exactly the equivalent of their own mass during collisions.
§ b (right) – Experimental work has shown erosion can have efficiencies as large as ~10-100 [5].
§ 𝜒 is referred to as both ‘erosion efficiency’ or excavated mass ratio. 

There are several barriers preventing the resulting mm- and cm-sized 
“pebbles” from growing further:
§ Fragmentation – Relative velocity of like-sized pebbles (0.1 < !!

!"
< 1) 

increases as they grow, and they disintegrate during collisions [3].
§ Drift – Pebbles are removed from certain disc regions by radial drift 

faster than they can grow/replenish [4].
§ Erosion – Mass-loss of larger dust grains resulting from frequent 

high-velocity impacts of small impactors ( !#$%&'#

!()*$+#,%
> 10).
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Current simulations of dust coagulation highlight mostly the growth 
barriers associated with fragmentation and radial drift, but erosion can 
play a major role.
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Results

Key Conclusions & Future Steps
Increasing 𝜒 from 1 to 10:

Method
We run a suite of DustPy simulations of protoplanetary discs 
(0.1−1	𝑀𝑦𝑟), exploring different values of several parameters to shed 
light on how erosion impacts maximum particle size and the shape of the 
dust size distribution.

Figure 4 – We define an ‘Erosion Standard Model’ separate to the default DustPy values, from which we 
can vary the necessary parameters as desired.

Very Low Mass Star 
§ 𝑀∗ = 0.1𝑀⊙
§ 𝑀-&.) = 0.05𝑀∗ = 0.005𝑀⊙
§ 𝑇 = 2800𝐾
§ 𝑟'&/ = 0.1	𝐴𝑈 
      (inner radial grid boundary)  

Future work should investigate non-constant erosion 
efficiency by implementing 𝑓!"#$%  into the DustPy code.

No variation in viscosity parameter 
found for lower mass stars [7].

Lower Viscosity  Parameter
(shown in Figs. 5-7)
§ 𝛼 = 1001

Lower Fragmentation 
Velocity (shown in Figs. 5-7)
§ 𝑣2#"$ = 1	𝑚/𝑠

§ 𝛼 = 1003
§ 𝑣2#"$ = 5	𝑚/𝑠
§ 𝑀∗ = 1𝑀⊙
§ 𝑀-&.) = 0.05𝑀⊙
§ 𝜒 = 1, 5, 10

Temperature for a 0.1𝑀⊙ star estimated using 
evolutionary tracks from [8] and Trappist-1 
temperature value from [9].

We attempted to explore values of 𝜒 > 30, but 
ran into numerical issues, leading to anomalous 
discontinuities in the dust density distribution.
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Experimental results from [5] approximated the excavated 
mass ratio (seen in Fig. 3) as being described by:

Decreasing 𝑣&'$(  :
§ Decreases peak mass by a factor of ~10! 

and the Stokes numbers by a factor of ~20. 

Decreasing 𝛼:
§ Increases peak mass by a factor of ~10!	
       and the Stokes numbers by a factor > 10.
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Results look similar 
for protoplanetary 
discs around low 
mass stars (not 
presented in the 
section above).

§ Reduces peak mass of dust grains.
§ Reduces peak and weighted 

arithmetic mean Stokes numbers 
of the dust grains.

§ Increases amount of small grains 
present in the size distribution.

Figure 6 (bottom left) – Radial profile 
for weighted arithmetic mean Stokes 
numbers with varying 𝜒, 𝛼 and 𝑣:;<=
§ a, b (top to bottom) – Discs after 

0.01	&	0.1	𝑀𝑦𝑟  shown; trend 
continues for disc after 1	𝑀𝑦𝑟.

𝛼 = 10!" , 𝑣#$%&
= 1	𝑚/𝑠 

𝛼 = 10!' , 𝑣#$%& =
1	𝑚/𝑠 

= Increasing 𝜒

𝛼 = 10!" , 𝑣#$%& =
5	𝑚/𝑠 

𝛼 = 10!', 𝑣#$%& = 5	𝑚/𝑠 

𝛼 = 10!" , 𝑣#$%&
= 1	𝑚/𝑠 

𝛼 = 10!' , 𝑣#$%& =
1	𝑚/𝑠 

𝛼 = 10!" , 𝑣#$%&
= 5	𝑚/𝑠 

𝛼 = 10!', 𝑣#$%& = 5	𝑚/𝑠 

= Increasing 𝜒

Figure 7 (bottom right) – Peak dust 
grain mass (left) and Stokes number 
(right) as a function of 𝜒 at different 
distances (in 𝐴𝑈) from star. 
§ Disc after 0.01	𝑀𝑦𝑟 shown; trends 

continue for disks after 0.1-1	𝑀𝑦𝑟.
§ 𝑖𝑟 = 50 does not yield relevant 

results as the disc does not fully 
develop there within these 
timescales.

𝛼 = 10!"
𝑣#$%& = 1	𝑚/𝑠 

Figure 5 (left) – Ratio of dust density 
distributions (𝜒 = 10	&	𝜒 = 1). 
§ Disc after 0.01	𝑀𝑦𝑟 shown; trends 

continue for discs after 0.1-1	𝑀𝑦𝑟.
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Clumping 
threshold 
taken from 
Fig. 2 & Fig. 4  
in [11].
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Erosion zone 
(extends up to 
104𝑔 for radii 
up to 10	𝐴𝑈) 
taken from Fig. 
4 in [10].

Fewer large dust grains for 𝜒 = 10 

(due to the more efficient erosion)

Increased 
abundance of 
small grains for 
𝜒 = 10
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