Exocomet Hunting with Neural Networks

Azib Norazman, Grant Kennedy, Thomas Killestein

UK & Ireland Discs Meeting 2024

Introduction Exocomets

Exocomets: analogues of solar system comets.

Composed of ice, dust, and rocky material

Why do we study detections of exocomets?

- Links towards the architecture of planetary systems.
- Trends of exocomet host stars?

The Solar System comet Hale-Bopp

Adapted from Marino et al. 2018

Introduction Exocomets - Detection Methods for Transiting Exocomets **Photometry**

Spectroscopy

- Variable absorption features in spectral lines.
- HARPS, FEROS

- Upside-down shark fin-like transits.
 - Kepler, TESS

Zieba et al 2019; Strøm et al. 2020

Methods

How do we search for exocomets?

Methods included:

- Visual searches through lightcurves (Rappaport et al 2018)
- "Classical" automated methods (Kennedy et al. 2019, Norazman et al. in prep).
 - system?

See poster #19!

• The main science goals: Determine the occurrence rates of exocomet events; what is the relationship between these detections and the stellar age/spectral-type of host

Methods

Classical Techniques; Results

- **Kepler occurrence rates**: 3/200,000 stars observed over 4 years (Kennedy et al 2019).
- **TESS occurrence rates:** 6/9,000,000 stars observed over 1 month (Norazman et al. in prep)
- Putting this together, exocomet occurrence rates in TESS are roughly 1/10,000 stars per year.

njected Depth

6	5 7	7 8	3 9	Magnitude 9	0	11	12	13
	0.225	0.190	0.195	0.221	0.209	0.169	0.105	
10 ⁻³ -	0.308	0.269	0.282	0.306	0.319	0.281	0.179	
	0.407	0.363	0.391	0.408	0.439	0.406	0.290	
	0.502	0.473	0.494	0.534	0.553	0.546	0.449	
4	0.614	0.579	0.594	0.630	0.648	0.652	0.575	
, .	0.706	0.659	0.687	0.712	0.737	0.737	0.699	
	0.778	0.748	0.765	0.797	0.805	0.805	0.774	
	0.840	0.821	0.833	0.841	0.847	0.857	0.829	
10-2	0.879	0.872	0.879	0.882	0.884	0.882	0.873	

Injection Recovery

Methods Classical Techniques; Limitations

Why do we need to improve detection techniques?

- Systematics/detrending may have prevented real detections.

Machine learning as a potential <u>efficient</u> solution:

- Convolutional Neural Networks (CNN)
 - Works well for 2D (image classification) or 1D (exoplanet science) data
 - A key advantage is that the CNN can focus on the shape of exocomet transits.

• Distributions and thresholds are based on a very small sample of previous detections.

Tey et al 2023, Valizadegan et al 2021

Methods - Machine Learning Training Set

set by injecting exocomet models into real TESS lightcurves.

We also insert:

- Binaries (Prsa et al 2021)
- Synthetic binaries
- Synthetic exoplanets
- Stellar variability

Since the known number of exocomet systems is still few, we generate a synthetic training

Methods - Machine Learning Training Set

Since the known number of exocomet systems is still few, we generate a synthetic training set by injecting exocomet models into real TESS lightcurves.

We also insert:

- Binaries (Prsa et al 2021)
- Synthetic binaries
- Synthetic exoplanets
- Stellar variability

Preliminary Results Validating our CNN models - Predictions on real data

TIC 110969638

• Goal: Re-analyse the first two years of TESS (~14m lightcurves) and compare with results of classical method.

comet

- 0.6 н

Probability

- 0.0

F

f

Preliminary Results Validating our CNN models - Predictions on real data

KIC 11084727

- Probability of Exocomet
- 0.0

- Our CNN recovers transits for most of the exocomet candidates to date.
- Goal: Re-analyse the first two years of TESS (~14m lightcurves) and compare with results of classical method.

F

f

Preliminary Results Validating our CNN models - Predictions on real data

- Our CNN recovers transits for most of the exocomet candidates to date.
- Goal: Re-analyse the first two years of TESS (~14m lightcurves) and compare with results of classical method.

F

f

Conclusions

- The number of exocomets in photometry is still only a handful.
- Large-scale searches are well underway.
- Classical automated approaches have found new exocomet candidates
 - But it may have its limitations, so we are trying an independent method (i.e. CNN)
- The CNN can be trained well by injecting exocomet models into real data.
 - Our CNN recovers most most transits from the known candidates a good sign!

Extra slides - Example of Training Set

Extra slides

More predictions on real data

Extra slides

More predictions on real data

Extra Slides CNN Performance

Accounting for overfitting:

- Dropout
- L2 Regularisation
- ReduceLRonPlateau
- Early Stopping
- Ensembling

Extra Slides Can you detect a Solar System comet?

- exocomets and these Solar System comets.
- much more active comet more typical comets are not like Hale-Bopp.

 Hale-Bopp and 1/P Halley could be possible if you consider their dust production, since a recent paper (Luk'yanyk et al 2024) has determined the similarities between the Beta Pic

• BUT, Hale-Bopp itself is an "outlier" in the taxonomy of Solar System comets in that it is a