Imperial College London

The Effect of Disc Photoevaporation on the Evolution of Migrating Giant Planets.

Emmanuel Greenfield

Supervisor: James Owen

UKI Discs Meeting, September 11th 2024

Gap opening and type II migration

2

The importance of multi-planetary systems and resonances

Possibly in resonance?

The importance of multi-planetary systems and resonances

Adapted from Lee & Peale 2002

Photoevaporation – a preferred mechanism for disc dispersal

Hollenbach et al. 1994, Yorke et al. 1997, Font et al. 2004, Alexander et al. 2006, Owen et al. 2010, 2011, 2012

Photoevaporation – a preferred mechanism for disc dispersal

Adapted from Pascucci et al. 2011

The idea – disc photoevaporation

With photoevaporation

Without photoevaporation

$$\frac{d\Sigma}{dt} = \dot{\Sigma}_{accretion} - \dot{\Sigma}_{PE}$$

 $\dot{M}_{accretion} \propto \Sigma$

The mass loss rate due to photoevaporation dominates in the gap, where surface density is low

Resonance correlates with eccentricity

The setup – disc photoevaporation

1 M_J planets 2D isothermal simulation $\alpha = 10^{-3}$

3 Photoevaporation models: No wind: $\dot{M}_{wind} = 0 \ M_{\odot} \ yr^{-1}$ Weak wind: $\dot{M}_{wind} = 5.0 \ \times 10^{-10} \ M_{\odot} \ yr^{-1}$ Strong wind: $\dot{M}_{wind} = 5.0 \ \times 10^{-9} \ M_{\odot} \ yr^{-1}$

Photoevaporation only contributes to deepening pre-existing planetary gaps on these timescales

Expectation – higher eccentricities

Adapted from Lee & Peale 2002

The model – the resonant angle

The resonant argument determines how deep the resonance is. The smaller the oscillation amplitude, the deeper the resonance.

The model – the resonant angle

The resonant argument determines how deep the resonance is. The smaller the oscillation amplitude, the deeper the resonance.

Results – deeper and more durable resonances

Results – eccentricity rise and slower decay

Summary

Goal: Investigate how photoevaporation affects the evolution of giant planet resonances

<u>Result</u>: Strong photoevaporative winds delay resonance breaking and lead to higher eccentricities associated with a deeper resonance

<u>Next</u>: Explore a larger parameter space to obtain more information on this phenomenon

Backup – longer simulations

Issues arise due to interactions between the spiral wakes and the inner boundary