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Sustenance of turbulence/dynamo action in protoplanetary discs

Presence of a linear instability mechanism?
Degree of ionization.
Different non-ideal MHD terms.
...

Subcritical turbulence:
Laminar and turbulent state in competition.

Armitage (2011).

Nauman & Pessah (2018).
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Self-sustaining processes in magnetohydrodynamics (MHD)
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Riols et al. (2013).
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Field decomposition:

v = vy ey + vp︸ ︷︷ ︸
y -averaged part

+ v3D︸︷︷︸
Wave

, b = by ey + bp︸ ︷︷ ︸
y -averaged part

+ b3D︸︷︷︸
Wave

vp = ∇× (ψey ), bp = ∇× (χey )

Toroidal field:

∂by

∂t
= −bx︸︷︷︸

1

+ey · ∇ × (v × b) +
1

Rm
∇2by

Poloidal flux:
∂χ

∂t
+
∂(ψ, χ)
∂(z, y)

= (v3D × b3D) · ey︸ ︷︷ ︸
2

+
1

Rm
∇2χ

1 Ω-effect
2 Feedback electromotive force (EMF)

(Rincon et al. 2007, Rincon et al. 2008)
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Alfvén resonance & resonant absorption

Research question:
What is the shape and the location of the electromotive force (EMF)?

Consider a system with a continuous background flow V (x), a magnetic
field B(x), and a wave with wavenumber vector k giving the flow
frequency ωf = V · k and Alfvén frequency ωA = B · k:

The flow has a continuous spectrum.
A wave with frequency ω will undergo Alfvén resonance at positions
where (ω − ωf )2 = ω2

A.
At these resonance points, energy is absorbed due to phase mixing.
This absorption process is independent on resisitivity and viscosity.
As a consequence of the absorption, resonance layers may act as
barriers that delimit fluid/plasma motion.

(Barston, 1964; Booker & Bretherton, 1967; Grad, 1969; Uberoi, 1972)
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Analytical solution near resonance
Consider the linearized incompressible ideal Euler and induction equation in
cylindrical coordinates

∂tv + (V · ∇)v + (v · ∇)V − (B · ∇)b − (b · ∇)B = −∇π
∂tb + (V · ∇)b + (v · ∇)B − (B · ∇)v − (b · ∇)V = 0

∇ · v = 0, ∇ · b = 0,
with a basic state:

V (r) = [0,Vθ(r),Vz (r)], B(r) = [0,Bθ(r),Bz (r)],
and a perturbation [v , b, π](r , θ, z, t) = [v̂ , b̂, π̂](r)ei(mθ+kz−ωt).

By solving the induction equation for b̂ and expressing v̂ in terms of a
Lagrangian displacement ξ, one obtains the equation system[(

C1 − D
r

)
−C2

C3 −C1

](
ξr
π

)
= D

(
ξ′r
π′

)
,

where C1, C2 and C3 are coefficients that depend on m, k, r , B, V and

ωf =
Vθ
r

m + Vz k, Ω = ω − ωf , ωA =
Bθ
r

m + Bz k, D = Ω2 − ω2
A.

(Goossens et al. 1992)
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Analytical solution near resonance cont.

The system has a singularity at r = rA where D = 0. Let
s = r − rA � 1 and assume that ξr and π may be described by
modified power series solutions in s:

ξr (s) =
∞∑

n=0
Xnsσ+n, π(s) =

∞∑
n=0

Ynsσ+n

Frobenius method: Indicial polynomial with two complex distinct
roots σ1,2 = ±σi . =⇒ Two independent power series solutions.
Introduce a small growth rate α ∼ O(s) that shifts the singularity
away from the real axis: ω → ω + iα, rA → rA + iχ(α).
Taylor expand all functions of ω in α� 1.
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Electromotive force (EMF)

Describes the induction of the magnetic field.
Perturbation electromotive force (EMF),

E =
(

v̂ei(mθ+kz−[ω+iα]t) + v̂∗e−i(mθ+kz−[ω+iα]t)
)

×
(

b̂ei(mθ+kz−[ω+iα]t) + b̂∗e−i(mθ+kz−[ω+iα]t)
)
.

Study the steady mean component of the forcing.

Recall: ∂tχ = (v3D × b3D) · ey + . . .

Substitution of the analytical solution:

r : Ae±φσi

{
2kT

D(1)(m2 + k2r2
A)

1

s2 + χ2
×[

srA
(

Ωω′A − Ω′ωA
)
∓ χ

(
kr2

A

(
ωf

(
Vθ
r

)′
+ Ω

(
Bθ
r

)′)
− m
(
ωf V ′z + ΩB′z

))
± αωf

4kT

D(1)
−

αχrAω
′
f ∓ αs

((
Bθ
r

)′
kr2

A − B′z m

)]
+ rA

(
B′z

(
Vθ
r

)′
− V ′z

(
Bθ
r

)′)}
,

θ : 4Aα
kTωf

D(1)(m2 + k2r2
A)

e±φσi
krAs ∓ mχ

s2 + χ2
, z : 4Aα

kTωf
D(1)(m2 + k2r2

A)
e±φσi

ms ± krAχ

s2 + χ2
,
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Validation of the EMF expression
Numerical ideal MHD calculations (Ogilvie & Pringle, 1996):

Background state: V (r) = [0, rΩK (r), 0], B(r) = [0,B0r−1, 0],
with B0 = 0.2 and ΩK (r) = r−3/2 is the Keplerian profile.
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Cartesian model: stability diagram
No-slip, electr. conducting walls; Re = 103, Pm = 1, R = −4/3; B = (0,B0, 0)
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Conclusions and summary

Resonance absorption is a powerful damping mechanism that take place in many
different contexts.
It is an ideal MHD effect due to phase mixing.

In a disc where the MRI is latent, dynamo action may arise subcritically.
Closing of the subcritical dynamo process relies on a feedback electromotive
force (EMF).
The EMF is centered around the Alfvén resonance layers.
Analysing this process will help us understand under what conditions the MRI
can lead to sustained magnetic fields and fluid motion in astrophysical discs.

Future work: Analytical expression for the EMF in an axially modulated flow.
Ansatz: [v , b, π](x , y , z, t) = [v̂ , b̂, π̂](x , z)ei(my−ωt)

Thank you for your attention!
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