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Sustenance of turbulence/dynamo action in protoplanetary discs

@ Presence of a linear instability mechanism?

o Degree of ionization.
o Different non-ideal MHD terms.
o ...
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Self-sustaining processes in magnetohydrodynamics (MHD)
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Omega effect magnetic instabilities
(MRI, kink etc.)
Weak axisymmetric Non-axisymmetric velocity
poloidal magnetic field and magnetic perturbations
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Nonlinear feedback
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Riols et al. (2013).
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@ Feedback electromotive force (EMF)
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Brynjell-Rahkola & Ogilvie

Resonance absorption in MRI



Introduction
0e0

Self-sustaining processes in magnetohydrodynamics (MHD)

0(1) Field decomposition:
Axisymmetric toroidal
magnetic field Non-axisymmetric _ = - — h B
Omega effect magnetic instabilities V= vyey + Vp +‘ V3D ) b= byey + bp +\b3D,
(MRI, kink etc.) v v
y-averaged part ~ Wave y-averaged part ~ Wave
Vv, =V x (Ye b, =V x (xe
Weak axisymmetric Non-axisymmetric velocity P (d} Y)’ P (X }/)
poloidal magnetic field and magnetic perturbations Toroidal field:
OlRm "~ .
%y~ Bote, T (vrb) + V7,
(electromotive force) ot -~ Rm
Riols et al. (2013). !
Poloidal flux:
0 1o} —_ 1
X M = (vap ><b3D)~ey+—V2X
ot 9(z,y) ~————o Rm
2
Q Q-effect

@ Feedback electromotive force (EMF)
(Rincon et al. 2007, Rincon et al. 2008)

Brynjell-Rahkola & Ogilvie

Resonance absorption in MRI



Introduction
ooe

Alfvén resonance & resonant absorption

Research question:

What is the shape and the location of the electromotive force (EMF)?

Brynjell-Rahkola & Ogilvie

Resonance absorption in MRI



Introduction
ooe

Alfvén resonance & resonant absorption

Research question:
What is the shape and the location of the electromotive force (EMF)?

Consider a system with a continuous background flow V/(x), a magnetic
field B(x), and a wave with wavenumber vector k giving the flow
frequency wr = V - k and Alfvén frequency wa = B - k:

Brynjell-Rahkola & Ogilvie

Resonance absorption in MRI



Introduction
ooe

Alfvén resonance & resonant absorption

Research question:
What is the shape and the location of the electromotive force (EMF)?
Consider a system with a continuous background flow V/(x), a magnetic

field B(x), and a wave with wavenumber vector k giving the flow
frequency wr = V - k and Alfvén frequency wa = B - k:

@ The flow has a

Brynjell-Rahkola & Ogilvie

Resonance absorption in MRI



Introduction
ooe

Alfvén resonance & resonant absorption

Research question:
What is the shape and the location of the electromotive force (EMF)?

Consider a system with a continuous background flow V/(x), a magnetic
field B(x), and a wave with wavenumber vector k giving the flow
frequency wr = V - k and Alfvén frequency wa = B - k:

@ The flow has a

o A wave with frequency w will undergo at positions

where (w — wr)? = w3.

Brynjell-Rahkola & Ogilvie

Resonance absorption in MRI



Introduction
ooe

Alfvén resonance & resonant absorption

Research question:

What is the shape and the location of the electromotive force (EMF)?

Consider a system with a continuous background flow V/(x), a magnetic
field B(x), and a wave with wavenumber vector k giving the flow
frequency wr = V - k and Alfvén frequency wa = B - k:

@ The flow has a

o A wave with frequency w will undergo at positions
where (w — wr)? = w3.

@ At these resonance points, energy is due to

Brynjell-Rahkola & Ogilvie

Resonance absorption in MRI



Introduction
ooe

Alfvén resonance & resonant absorption

Research question:
What is the shape and the location of the electromotive force (EMF)?
Consider a system with a continuous background flow V/(x), a magnetic

field B(x), and a wave with wavenumber vector k giving the flow
frequency wr = V - k and Alfvén frequency wa = B - k:

@ The flow has a

o A wave with frequency w will undergo at positions
where (w — wr)? = w3.

@ At these resonance points, energy is due to

@ This absorption process is on and

Brynjell-Rahkola & Ogilvie

Resonance absorption in MRI



Introduction
ooe
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Research question:

What is the shape and the location of the electromotive force (EMF)?

Consider a system with a continuous background flow V/(x), a magnetic
field B(x), and a wave with wavenumber vector k giving the flow
frequency wr = V - k and Alfvén frequency wa = B - k:

@ The flow has a

o A wave with frequency w will undergo at positions
where (w — wr)? = w3.

@ At these resonance points, energy is due to

@ This absorption process is on and

@ As a consequence of the absorption, resonance layers may act as
that delimit fluid/plasma motion.

(Barston, 1964; Booker & Bretherton, 1967; Grad, 1969; Uberoi, 1972)
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Electromotive force
00000

Analytical solution near resonance

@ Consider the linearized incompressible ideal Euler and induction equation in
cylindrical coordinates
orv+(V-Viv+(v-V)V—-(B-V)b—(b-V)B= -V
Otb+(V-V)b+(v-V)B—(B-V)v—(b-V)V =0
V.-v=0, V-b=0,
with a basic state:
V(r) = [0, Vi(r), Va(r)],  B(r) = [0, Bo(r), Ba(r)],

and a perturbation [v, b, 71|(r, 0, z, t) = [, b, #](r)e/(m0+kz—wi)

(Goossens et al. 1992)
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Analytical solution near resonance

@ Consider the linearized incompressible ideal Euler and induction equation in
cylindrical coordinates
orv+(V-Viv+(v-V)V—-(B-V)b—(b-V)B= -V
Otb+(V-V)b+(v-V)B—(B-V)v—(b-V)V =0
V.-v=0, V-b=0,
with a basic state:
V(r) =0, Vo(r), Va(r)], B(r) = [0, By(r), B:(r)],
and a perturbation [v, b, 71|(r, 0, z, t) = [, b, #](r)e/(m0+kz—wi)
@ By solving the induction equation for b and expressing ¥ in terms of a
Lagrangian displacement £, one obtains the equation system

D /
(a-2) -o (s) ~b (5,/) 7
(&} -G 7" a
where C1, C; and C3 are coefficients that depend on m, k, r, B, V and

Vi B
wr=—2m+ Vik, Q=w-w;, wa=-—m+ Bk, D=0}
r r

(Goossens et al. 1992)
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Electromotive force
0@000

Analytical solution near resonance cont.

@ The system has a singularity at r = r4 where D = 0. Let
s =r —rap < 1 and assume that &£, and ™ may be described by
modified power series solutions in s:

&(s) = ZX,,S‘””, n(s) = Z Y,s7t"
n=0 n=0
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@ The system has a singularity at r = r4 where D = 0. Let
s =r —rap < 1 and assume that &£, and ™ may be described by
modified power series solutions in s:
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@ Frobenius method: Indicial polynomial with two complex distinct
roots 02 = +0;. = Two independent power series solutions.
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Analytical solution near resonance cont.

@ The system has a singularity at r = r4 where D = 0. Let
s =r —rap < 1 and assume that &£, and ™ may be described by
modified power series solutions in s:

&(s) = ZX,,S‘””, n(s) = Z Y,s7t"
n=0 n=0

@ Frobenius method: Indicial polynomial with two complex distinct
roots 02 = +0;. = Two independent power series solutions.

@ Introduce a small growth rate & ~ O(s) that shifts the singularity
away from the real axis: w — w + iy, ra — ra + ix(«).
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Electromotive force
0@000

Analytical solution near resonance cont.

@ The system has a singularity at r = r4 where D = 0. Let
s =r —rap < 1 and assume that &£, and ™ may be described by
modified power series solutions in s:

&(s) = ZX,,S‘””, n(s) = Z Y,s7t"
n=0 n=0

@ Frobenius method: Indicial polynomial with two complex distinct
roots 02 = +0;. = Two independent power series solutions.

@ Introduce a small growth rate & ~ O(s) that shifts the singularity
away from the real axis: w — w + iy, ra — ra + ix(«).

@ Taylor expand all functions of w in a@ < 1.
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Electromotive force
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omotive force (EMF)

magnetic field \  Non-axisymmetric
Omega effect, smagnetic instabilities
(MRI, kink etc.)
Weak axisymmetric Non-axisymmetric velocity
poloidal magnetic field and magnetic perturbations
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Electromotive force
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Electromotive force (EMF)

@ Describes the induction of the magnetic field.

@ Perturbation electromotive force (EMF),

£ = (oei(m0+k27[w+ia]t) + o*efi(m9+sz[w+ia]t))

% (Bei(m9+kz—[w+i&]t) + B*e—i(m9+kz—[w+ia]t)) .

Study the steady mean component of the forcing.

magnetic field \  Non-axisymmetric
Omega effect, Jnagnetic m\lulnhm s
(MRI, kink etc.
Weak axisymmetric Non-axisymmetric velocity
poloidal magnetic field and magnetic perturbations

Nonlinear feedback
romotive force)
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Electromotive force (EMF)

@ Describes the induction of the magnetic field.

@ Perturbation electromotive force (EMF),

magnetic field Non-axisymmetric
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Electromotive force
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Validation of the EMF expression

Numerical ideal MHD calculations (Ogilvie & Pringle, 1996):

Background state: V(r) = [0 rQ(r),0], B(r) = [0, Bor~1,0],
with By = 0.2 and Qk(r) = r—3/2 is the Keplerian profile.
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Validation of the EMF expression

Numerical ideal MHD calculations (Ogilvie & Pringle, 1996):
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Cartesian model: stability diagram

No-slip, electr. conducting walls; Re = 103, Pm =1, R = —4/3; B = (0, By, 0)

Rotating plane Couette flow
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Conclusions and summary

@ Resonance absorption is a powerful damping mechanism that take place in many
different contexts.

@ It is an ideal MHD effect due to phase mixing.
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Thank you for your attention!
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