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1984: The Vega Phenomenon
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1984: The Vega Phenomenon

Grain temperature gives radius from star where
| most of the dust resides, but distinguishing a

shell versus disc architecture requires resolved
imaging.

DISCOVERY OF A SHELL AROUND ALPHA LYRAE!

H. H. AuMANN, F. C. GILLETT, C. A. BEICHMAN, T. DE JONG, J. R. Houck, F. J. Low,

G. NEUGEBAUER, R. G. WALKER, AND P. R. WESSELIUS
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ABSTRACT

TRAS observations of a Lyrae reveal a large infrared excess beyond 12 pm. The excess over an extrapolation
of a 10,000 K blackbody is a factor of 1.3 at 25 pm, 7 at 60 wm, and 16 at 100 pm. The source of 60 pm emission
has a diameter of about 20”. This is the first detection of a large infrared excess from a main-sequence star
without significant mass loss. The most likely origin of the excess is thermal radiation from solid particles more

than a millimeter in radius, located approximately 85 AU_from a Lyr and heated by the star to an equilibrium
temperature of 85 K. These results provide the first direct e tside of the solar system for the growth of
large particles fron\he residual of the prenatal cloud of gas and dust.

Not a iSOK exozodi that was discovered, but a cold exo Kuiper Belt/Shell, before the
Kuiper Belt was detected in 1992.




The Fab Four
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* Gillett 1986 (although announced at a
conference in 1984)

* Detection of IR excess around Vega was
soon followed by detection of IR
excesses around Fomalhaut, beta
Pictoris and epsilon Eridani — to become
known as The Fab Four.

* eps Eri is the closest of the four — at just
3.2pc away — and stands out as the only
one of the four that is not an A star.



Resolving the beta Pic Disc

Smith & Terrile 1984




Resolving the beta Pic Disc

g Smith & Terrile 1984

This made it clear that the dust was distributed as a disc not a shell.



Debris Disc Predictions

* Inspired by the nebular hypothesis of
planetary system formation and the
cratering history of the Moon, Witteborn
et al. (1982) predicted infrared
excesses due to 'debris clouds'.

 They assumed the planetesimals would
follow the orbits of the planets, but
otherwise the model was very similar to
current debris disc models for instance
In predicting the optical properties of
the dust and its size distribution.
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Key Concept: Spectral Energy
Distribution
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* With photometry covering a range

of wavelengths, we build up an
SED.

Fitting models to this, we can
estimate properties of the disc.

Disc flux can usually be
approximated by one or more
greybodies.

Detailed optical property
calculations can be made, although
this introduces many degeneracies
including composition, porosity and
size distribution.
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Kuiper belt

* Predicted to
exist by
Fernandez
(1980)

* First Kuiper belt object (after
Pluto and Charon) discovered by
Jewitt, Luu & Marsden (1992).

* By now 1000s are known.

Credit: David Jewitt



Key concept: Radial distribution
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Disk mass (M__ )

Debris disc evolution
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* In the 00s and 10s,
surveys with 1SO, Spitzer,
Herschel, JCMT and others
built up our picture of the
population of debris discs.

 This has furthered our

unc
pro

erstanding of how disc
nerties related to other

pro

nerties of the star such

as age and spectral type.



Mdusr (MGB)

From Protoplanetary to Debris
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e Evolution from class Il
- Il - debris is still
not fully understood.

e Could it be that the
structured discs
(boxes) are the ones
that become debris
discs and all others
lose too much of their
dust mass to remain
detectable?



cross-sectional area

Key Concept: Size Distribution

Debris discs

o (D)dD

10"7E

1013:

1012:

1011:

o'k

Asteroid / Kuiper belt

Strength Regime
Gravity Regime
Primordial Distribution

107*

1072 10° 102 10*
Diameter, m

« Small grains have a short

lifetime and must be replenished
through collisions, necessitating
a size distribution.

Studies of the asteroid belt
suggested this can be
approximated by a power law
n(D)dDocD3>dD (Dohnanyi
1969).

More detailed models of size
distributions take into account
effects like the dependence of
strength on size (e.g. O'Brien &
Greenberg 2003) and the impact
of transport forces (e.g. Wyatt,
Clarke & Booth 2011).



Key Concept: Transport forces

 Emission seen at a given wavelength is dominated by
grains of roughly the same size as the wavelength.

Poynting-Robertson drag Birthring  Radiation pressure

o
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« Stellar radiation causes grains of certain sizes to be
pushed out or dragged in. Such small grains are typically
not seen at sub-mm and longer wavelengths.



SOFIA 35 p‘mJ

JWST 15.5 um

JWST 25.5 ym

-

V Herschel 70 ym

ALMA 1.3 mm |

Gaspar et al.
2023
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Directly Detected Planets

Fomalhaut 51 Eri HD 106906

Gemini/GPI

HD 106806 b

650 AU
97 billion km
60 billion mi

HD 95086
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Warps

Apai et al. 2015

Planet Signatures

Eccentricity
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Planet Signatures: Inner Edge

Locations of planets predicted to be shaping debris disc inner edges (Pearce
et al. 2022) are in roughly the same region of parameter space as those
predicted to be carving gaps in protoplanetary discs (Lodato et al. 2019).

Planet truncates

disc inner edge

Eccentric planet drives
disc eccentricit

Broad cavities could imply
multi-planet clearing

Stirred debris collides,
releasing observable dust
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Shape of the Inner Edge

* With high resolution W
observations we are not 1 I
simply measuring the .

ocation of the inner edge,
put also its shape, which ! ;
nelps us distinguish | sty anty
petween an inner edge ' '
carved by collisions and
one carved by planets.

o of observed disc

HD 9672 |
(49 Ceti)
HD 10647 |
(q* Eri)
HD 92945 |

(V419 Hya)
HD 107146 |
HD 197481 |
(AU Mic)
HD 206893 |
HD 218396 |
(HR 8799)

Pearce et al. 2024



Gas In debris discs

Continuum _Beta Pic
Flux %2n;lii(;/_(llﬁiy/lz)gal11) o

Presence of gas has often been used as a
way to define the difference between
protoplanetary and debris discs, but a
growing number of debris discs have been
found to have gas emission.
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Gas absorption

e Slettebak 1975, Kondo &
Bruhweiler 1985, Hobbs +
1985, Vidal-Madjar 1986 all
noted absorption lines
showing that there must be
gas in the beta Pic disc.

In Ca lI-K, Ferlet + 1987

also noted that the /
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variable and suggested this
was due to comets.
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Future telescopes Far- IR

- SALTUS Observatory. - 2

Astro2020 Decadal Survey report called for either a far-infrared
or an X-ray observatory to be implemented this decade.

All three far-IR concepts will be excellent for the discovery and
characterisation of debris discs.



Future telescopes: Sub-mm

 Atacama Large Aperture Submillimeter Telescope Mro_cofki et al. 2024

(AtLAST): 50m single-dish telescope (order of
magnitude increase in collecting area over JCMT!)
with 2° field of view covering 0.3-1mm.

» Capable of detecting large-scale emission around
nearby stars and reaching discs as faint as the
Kuiper belt.

» Capable of rapidly mapping star forming regions
and clusters to follow the evolution of debris discs.

» See Booth et al. (2024) and Klaassen et al. (2024)
for more details.

www.atlast-telescope.org
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* Wyaltt 2008, ARA&A 46: 339-383

e Krivov 2010, Research in Astronomy and Astrophysics 10
(5):383-414
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