QUANTIFYING THE C/O RATIO IN THE PLANET-FORMING ENVIRONMENTS AROUND VERY LOW-MASS STARS

Javiera K. Díaz-Berríos (pyjkd@leeds.ac.uk)

UKI discs meeting, Coventry, September 2024

Credits background: NASA/JPL-Caltech

UNIVERSITY OF LEEDS

PROTOPLANETARY DISKS CHEMISTRY IN PLANET-FORMING REGIONS

0.1

scattered light

near IR

co ro-vib Sco high-J

mid IR

Credits background: NASA/JPL-Caltech

Adapted from Miotello+2023

Why very low-mass stars (M<0.6M☉)? Most common hosts of exoplanetary systems!

far IR

100

HD

CO low-J

ices

sub-mm

10

Quantifying the C/O ratio in planet-forming environments around very low-mass stars – **Context** 2

→ r [au]

DISKS AROUND VERY LOW-MASS STARS THE CASE OF J160532' JWST OBSERVATIONS

Quantifying the C/O ratio in planet-forming environments around very low-mass stars – **Context**

DISKS AROUND VERY LOW-MASS STARS THE CASE OF J160532' JWST OBSERVATIONS

Quantifying the C/O ratio in planet-forming environments around very low-mass stars – **Context**

Tabone+2023, van Dishoeck+2023, Arabhavi+2024, Kanwar+2024, Kaeufer+2024

HOW TO EXPLAIN THE HIGH ABUNDANCES?

Credits background: NASA/JPL-Caltech

van Dishoeck+2023, Tabone+2023, Díaz-Berríos, J. K., Walsh, C., and van Dishoeck, E. F. (in prep.)

Hydrocarbon chemistry is sensitive to C/O ratios What mechanisms could be occurring in the disk to affect the C/O ratio?

1 AU

Credits background: NASA/JPL-Caltech

van Dishoeck+2023, Tabone+2023, Díaz-Berríos, J. K., Walsh, C., and van Dishoeck, E. F. (in prep.)

Hydrocarbon chemistry is sensitive to C/O ratios What mechanisms could be occurring in the disk to affect the C/O ratio?

1 AU

Credits background: NASA/JPL-Caltech

van Dishoeck+2023, Tabone+2023, Díaz-Berríos, J. K., Walsh, C., and van Dishoeck, E. F. (in prep.)

Hydrocarbon chemistry is sensitive to C/O ratios What mechanisms could be occurring in the disk to affect the C/O ratio?

10 AU

1 AU

CO₂-ice

mantle

 \mathbf{CO}_2

Gap

10 AU

Credits background: NASA/JPL-Caltech

van Dishoeck+2023, Tabone+2023, Díaz-Berríos, J. K., Walsh, C., and van Dishoeck, E. F. (in prep.)

Hydrocarbon chemistry is sensitive to C/O ratios What mechanisms could be occurring in the disk to affect the C/O ratio?

CARBON INTO THE GAS PHASE

OXYGEN DEPLETION DUE TO ICY PEBBLE TRAPPING IN THE OUTER DISK

1 AU

CO₂-ice

mantle

CO2

Gap

10 AU

Credits background: NASA/JPL-Caltech

van Dishoeck+2023, Tabone+2023, Díaz-Berríos, J. K., Walsh, C., and van Dishoeck, E. F. (in prep.)

Hydrocarbon chemistry is sensitive to C/O ratios What mechanisms could be occurring in the disk to affect the C/O ratio?

CARBON INTO THE GAS PHASE

ETION DUE TO ICY PEBBLE TRAPPING IN THE OUTER DISK

ENRICHMENT AND OXYGEN CARBON DEPLETION

HOW TO EXPLAIN THE HIGH ABUNDANCES?

Silicate

grains

Goal of this work

H₂O-ice

mantle

(0)

CO₂-ice

mantle

C-rich

grains

Soot

0.1 AU

1 AU

Quantifying the C/O ratio in planet-forming environments around very low-mass stars — Chemical model

Credits background: NASA/JPL-Caltech

van Dishoeck+2023, Tabone+2023, Díaz-Berríos, J. K., Walsh, C., and van Dishoeck, E. F. (in prep.)

Hydrocarbon chemistry is sensitive to C/O ratios What mechanisms could be occurring in the disk to affect the C/O ratio?

What degree of carbon enrichment and/or oxygen depletion reproduce the trend in observations?

10 AU

CHEMICAL MODELS PHYSICAL STRUCTURE OF A DISK AROUND A VERY LOW MASS STAR

PHYSICAL PARAMETERS FOR THE DISK MODEL

Parameter

Value

Stellar mass (M★) Stellar radius (\mathbf{R}_{\bigstar}) Effective temperature (T_{\star}) Accretion mass rate (M) Surf. density inner disk (Σ_{10AU})

 $0.1 \ \mathrm{M}_{\odot}$ 0.7 R⊙ 3000 K $10^{-9} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ $1.0 \mathrm{g} \mathrm{cm}^{-2}$

Credits background: NASA/JPL-Caltech

Walsh+2015, Díaz-Berríos+in prep

Chemical network 6173 gas-phase reactions involving 467 species! Includes gas-phase reactions, gas-grain interactions and grain-surface chemistry.

CHEMICAL MODELS FRACTIONAL ABUNDANCE MAPS: C₂H₂

$$0^{-4}$$

$$0^{-6}$$

 10^{-10}

 10^{-12}

Díaz-Berríos+in prep.

Fiducial model:

CHENICAL MODELS **FRACTIONAL ABUNDANCE MAPS: C₂H₂**

Díaz-Berríos+in prep.

Fiducial model:

CHENICAL MODELS **FRACTIONAL ABUNDANCE MAPS: C₂H₂**

Díaz-Berríos+in prep.

Fiducial model:

CHEMICAL MODELS **FRACTIONAL ABUNDANCE MAPS: C₂H₂**

Díaz-Berríos+in prep.

Fiducial model:

CHENICAL MODELS **FRACTIONAL ABUNDANCE MAPS: C₂H₂**

Díaz-Berríos+in prep.

Fiducial model:

CHENICAL MODELS **FRACTIONAL ABUNDANCE MAPS: C₂H₂**

Díaz-Berríos+in prep.

Fiducial model:

CHENICAL MODELS **FRACTIONAL ABUNDANCE MAPS: C₂H₂**

Díaz-Berríos+in prep.

Fiducial model:

CHENICAL MODELS **COMPARING CO₂ AND C₂H₂**

Díaz-Berríos+in prep.

Fiducial model:

CHEMICAL MODELS **COMPARING CO₂ AND C₂H₂**

Fiducial model:

HOW DO THE MODELS COMPARE WITH OBSERVATIONS? **SOME TRENDS: COLUMN DENSITY RATIOS**

HOW DO THE MODELS COMPARE WITH OBSERVATIONS? **SOME TRENDS: COLUMN DENSITY RATIOS**

HOW DO THE MODELS COMPARE WITH OBSERVATIONS? Some trends: Column density ratios

Díaz-Berríos+in prep.

HOW DO THE MODELS COMPARE WITH OBSERVATIONS? **SOME TRENDS: COLUMN DENSITY RATIOS**

KEY POINTS AND CONCLUSIONS WHAT DID WE LEARN FROM THE MODELS?

Credits background: NASA/JPL-Caltech

KEY POINTS AND CONCLUSIONS WHAT DID WE LEARN FROM THE MODELS?

Super-solar C/O value is needed to reproduce the ratios for the J160532 observations. Solar-like C/O value better reproduce the ratios for the ISO-Chal 147 data.

Credits background: NASA/JPL-Caltech

Which physical mechanisms lead to that particular C/O ratio is still an open question.

KEY POINTS AND CONCLUSIONS WHAT DID WE LEARN FROM THE MODELS?

Super-solar C/O value is needed to reproduce the ratios for the J160532 observations. Solar-like C/O value better reproduce the ratios for the ISO-Chal 147 data.

The systems observed so far show a range C/O and metallicities even if they present similar species detected in their spectra.

Credits background: NASA/JPL-Caltech

Which physical mechanisms lead to that particular C/O ratio is still an open question.

KEY POINTS AND CONCLUSIONS WHAT DID WE LEARN FROM THE MODELS?

Super-solar C/O value is needed to reproduce the ratios for the J160532 observations. Solar-like C/O value better reproduce the ratios for the ISO-Chal 147 data.

The systems observed so far show a range C/O and metallicities even if they present similar species detected in their spectra.

What are the implications for planet formation?

Credits background: NASA/JPL-Caltech

Which physical mechanisms lead to that particular C/O ratio is still an open question.

If gas giant planets are actively forming in these disks they could be accreting carbon-rich gas. Interesting to see if any carbon-rich planets are observed in the future.

Credits background: NASA/JPL-Caltech

QUANTIFYING THE C/O RATIO IN THE PLANET-FORMING ENVIRONMENTS AROUND VERY LOW-MASS STARS

JAVIERA K. DÍAZ-BERRÍOS (PYJKD@LEEDS.AC.UK)

UKI discs meeting, Coventry, September 2024

CERTIFICATION OF THE OWNER OWNER OF THE OWNER OW

Ê,

UNIVERSITY OF LEEDS

CHEMICAL MODELS PHYSICAL STRUCTURE OF A DISK AROUND A VERY LOW MASS STAR

Walsh+2015, Díaz-Berríos+in prep.

HOW DO OUR MODELS COMPARE WITH OBSERVATI SOME TRENDS: TOTAL COLUMN DENSITY

Díaz-Berríos+in prep.

COLUMN DENSITY PROFILES

This may help to reach the trends from the observations.

Quantifying the C/O ratio in planet-forming environments around very low-mass stars – **Backup**