

THE ROYAL SOCIETY

Protoplanetary Discs **Overview**

Richard Booth Royal Society University Research Fellow r.a.booth@leeds.ac.uk

Overview

UK&I Discs 2024 Richard Booth 2

Structure of a Protoplanetary Disc

Testi et al. (2014)

Gas Evolution: Turbulent viscosity or Winds?

Gas Evolution: Viscosity…

- Viscous discs spread
- Evolution slows as they age
- Produces a population of longlived, weakly accreting discs
- Photoevaporation opens a gap and terminates accretion
- Clears the disc after a few Myr

Fig Credit: Tabone+ (2022)

Gas Evolution: Viscosity and photoevaporation

- Viscous discs spread
- Evolution slows as they age
- Produces a population of longlived, weakly accreting discs
- Photoevaporation opens a gap and terminates accretion
- Clears the disc after a few Myr

Gas Evolution: Viscosity and photoevaporation

- Viscous discs spread
- Evolution slows as they age
- Produces a population of longlived, weakly accreting discs
- Photoevaporation opens a gap and terminates accretion
- Clears the disc after a few Myr

Reproduces disc lifetimes

Gas Evolution: Wind-driven evolution

• Evolution depends on how the magnetic **can also match disc lifetimes** field evolves

Purely wind driven models

Tabone et al. (2022); Data from Fedele+ (2010)

Disc Sizes: A distinguishing factor?

How turbulent are discs?

- Dust settling can be constrained via emission geometry
	- Favours weak turbulence ($\alpha \sim 10^{-4}$)
- Width of dust rings produces similar constraints
- CO lines in the sub-mm constrain turbulence in the upper layers of discs
- See nice review **Rosotti** (2023) for more constraints

Pinte et al. (2016); Pizzati et al. (2023); Dullemond et al. (2020); Villenave et al. (2020)

Dust mass evolution

- Protoplanetary disc masses are well characterized by ALMA continuum observations
- Most discs are much smaller / less massive than the big, wellstudied discs

 $\mathbf o$

 \circ

 \circ

ö

 \bullet

Constraints from resolved observations

Good need high-angular resolution, multi-wavelength observations:

- Long wavelengths (optically thin) constrain grain sizes
- Short wavelengths (optically thick) constrain temperatures
- Must account for high optical depths and scattering

Constraints from resolved observations

Richard Booth **13**

Dust evolution

Dust grains grow until they reach one the '**barriers to growth**':

Radial drift, bouncing, or fragmentation

Dust evolution

Simple dust growth models can match many bulk properties of discs

Model:

Grain growth Viscous evolution Photoevaporation

Sellek, Booth, & Clarke (2020)

Dust evolution

Simple dust growth models can match many bulk properties of discs

Model:

Grain growth Viscous evolution

Sellek, Booth, & Clarke (2020)

The problem with spectral indices

Spectral indices do not match:

- Large grains have been lost via radial drift
- Grains are too small
- Discs are too optically thin

Role of dust trapping

Sub-structures help retain grains, keeping spectral indices low

Population synthesis models with and without substructures

Pinilla et al. (2012); Zormpas et al. (2022); Delussu et al. (2024)

Signatures of unseen traps

Gas Masses: Carbon depletion in discs

UK&I Discs 2024 Richard Booth 20

CO depletion and C/O enhancement

ALMA MAPS:

Observed many lines at high angular resolution

- Radial profiles of CO depletion (factor 10-100)
- Enhanced emission from hydrocarbons: high C/O ratios in the gas

Zhang et al. (2021) Bosman et al. (2021)

Time-scale of CO depletion

CO depletion appears after ~1 Myr

Zhang et al. (2020)

Coupled chemistry + transport

Krijt et al. (2020);

Coupled chemistry + transport

Krijt et al. (2020);

Evidence for volatile transport

HD163296: Enhancement of CO inside the snow line Due to pebble drift?

Missing refractories accreting onto stars in discs with deep gaps

UK&I Discs 2024 Richard Booth 25

Diverse inner disc chemistry with JWST

Tabone et al. (2023), van Dishoeck et al. (2023)

Linking inner disc chemistry to disc properties

H2O emission in discs is sensitive to disc properties:

- High-temperature emission traces disc accretion
- Lower-temperature emission correlates with disc size

Do small discs have excess water associated with radial drift?

Banzatti et al. (2023)

Linking inner disc chemistry to disc properties

Similar results were already seen by Spitzer…

... but the sensitivity and resolution of JWST leads to more precise and robust measurements.

Summary

Topics covered:

- Protoplanetary disc evolution:
	- Do discs evolve viscously or are they driven by MHD-winds? **MHD wind models maybe currently favoured**
	- How dust evolves **How efficient is radial drift?**
- Carbon depletion in protoplanetary discs
	- A mix of chemical conversion and formation of ices on large grains
- What role does radial transport play in the composition? **Combining JWST and ALMA observations will help pin down gas and dust evolution**