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Credit: Bill Saxton/NRAO/NSF/AUI
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Gas Evolution: Turbulent viscosity orWinds?
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Viscous discs spread
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Evolution slows as they age w =0
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Fig Credit: Tabone+ (2022)
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Gas Evolution: Viscosity and photoevaporation

y

Viscous discs spread

Evolution slows as they age
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Photoevaporation opens a gap
and terminates accretion

Clears the disc after a few Myr

Owen et al. (2011)
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Gas Evolution: Viscosity and photoevaporation

y

Viscous discs spread

Evolution slows as they age
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Purely wind driven models
* Evolution depends on how the magnetic can also match disc lifetimes

field evolves

Bl accretion signatures

- = B IR excess
Pure wind (constant a) Pure wind (X _-dep )

W = oo wi=0.25 = model

age (Myr)

Tabone et al. (2022); Data from Fedele+ (2010)
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Wind-driven disk || Viscous disk

35 of 74 Mo=10"2M, |[ M;=10.06,0.3]M,
R0 =120,65] AU|| R¢o=10 AU

oy = constant

500 005 Jaddn
‘500 sndn

9 of 53

Upper Sco
Obs.

Rco, 90% (AU)

T
Reo  Raust, wanpam
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* Expansion of viscous discs is problematic
e Discs have low viscosity?

e Wind driven discs are a better match

BUT:
U. Sco has as stronger radiation field.
Are the discs affected by external photoevaporation?

Trapman et al. (2022)
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ALMA Band 6+7 no settling | himm=2.15au himm = 0.70 au
auss =3 1074

) , ) o Tau 042021
Dust settling can be constrained via emission

geometry
* Favours weak turbulence (¢ ~ 107%)
Width of dust rings produces similar constraints

CO lines in the sub-mm constrain turbulence in
the upper layers of discs

See nice review Rosotti (2023) for more Pinte et al. (2016); Pizzati et al. (2023); Dullemond et

al. (2020); Villenave et al. (2020)

constraints

Richard Booth UK&I Discs 2024 10



Dust mass evoluti

* Protoplanetary disc masses are
well characterized by ALMA
continuum observations

Most discs are much smaller /
less massive than the big, well-
studied discs

! 1 L I ! L T
Taurus i _ 1 10 10

Mdust [M@] @

0

Spectral index measurements
point to Ymm sized grains

Ansdell et a. (2016;2017;2020); o] |2

Barefeld et al. (2016); Williams et al. (2019); H!H
Frmen (mly) [scaled at 140pc] Ricci et al. (2010); Tazzari et al. (2021) un
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Constraints from resolved obseryvations
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Sierra et al. (2021)
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Dust evolution

— (drift
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— 10? years
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Dust grains grow until they reach one the - 10° years

‘barriers to growth’:
Radial drift, bouncing, or fragmentation
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Credit: Birnstiel et al.
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Model:
Simple dust growth models can match many Grain growth

bulk properties of discs Viscous evolution
Photoevaporation
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Sellek, Booth, & Clarke (2020)
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Dust evolution

Model:
Simple dust growth models can match many Grain growth

bulk properties of discs Viscous evolution
nt--+---aporation

U Sco (5-10 Mt 10° 5

JRosotti et al. (2019)

A A

102
63 per cent dust radius [au]

Sellek, Booth, & Clarke (2020)
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L |
eTaurus

* Ophiuchus |

Spectral indices do not match:

* Large grains have been lost
via radial drift

* @Grains are too small

e Discs are too optically thin

_..Birnstiel et al. (2010)
10? 10°
Flmm (mJy)

Richard Booth UK&I Discs 2024



... But Discs are not smooth

Population synthesis models with and without substructures

Substructured disks

Smooth disks 4.0 (early substructure)

~— observed — observed
— simulated — simulated

w
w
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w

Sub-structures help retain grains,
keeping spectral indices low
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w

Flmm [JY] Flmm [JYI

Pinilla et al. (2012); Zormpas et al. (2022); Delussu et al. (2024)
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Scardoni et al. (2024)

Richard Booth

Face-on view

Projected view
after inclination

Incline

UK&I Discs 2024

<
o
—
o
4
©
e
w
Q.
®
=
%)
v
w
-
+
L
(o))
=
(a 8]

— 2rc,p/dc.r=0.25
30 T w— 2fcp/dc =05 F——

—— 2!'( p/dc{—o75
25 4

20+ f & \ \‘i-
/ \\

\

\

15 /\/\
101 cylinders ' 7
Rectangular cuboids

25 1

‘ y
20'7/
1514

90 180 270 360
Azimuthal angle [°]




107 ;

10 £

CO masses are lower than

expected from the dust masses 10° |

5 [ — ’ ® Full disk
10 Eon i)

O Edge-on

Disk dust mass [M_]
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surveys was much
weaker than expected
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ALMA MAPS:
Observed many lines at high angular resolution

Radial profiles of CO depletion (factor 10-100)
Enhanced emission from hydrocarbons: high C/O
ratios in the gas

CO depletion factor
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CO depletion appears after ~1 Myr
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Zhang et al. (2020)
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Coupled chemistry. + transport

|
t/Myr=1.0 - FULL-CR16
t/Myr = 3.0
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Krijt et al. (2020);
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t/Myr = 1.0

| Main
Carbon
Carrier

| Main
Carbe
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r/au

Richard Booth

Relative carbon abundance
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Krijt et al. (2020);




HD163296: Enhancement of CO inside the snow line Missing refractories accreting onto stars
Due to pebble drift? in discs with deep gaps

200

=== Pehble drift model
w— R3
— R4

Zhang et al. (20!
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Diverse inner disc ,T,‘hemistry W}MWST

JWST MINDS programme
GW Lup

'Ii‘coz
13{:02 hot-band

1160532

CaH; 2co,
hot-band

|

H(10-8)

15.5 16.0 16.5
Wavelength [um]

. C-rich grain

Efficient radial drift . Si-rich grain
High O/H in the inner disk ' HzO ice

o CO, ice

GW Lup: H,0 and CO, rich; hydrocarbon poor H 0 o,
J120532: Hydrocarbon rich; H,0 poor o erdustiiop l
* Due different conditions in the disc? ‘:::;' H,G

* Or different disc compositions? e Gt o Db e o i l

Tabone et al. (2023), van Dishoeck et al. (2023)
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Linking inner disc ch yroperties

Black: Forsterite

compact disks
Gray:

H,O emission in discs is lrge-sructre
sensitive to disc
properties:
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Banzatti et al. (2023)
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Linking inner disc chemistry to disc properties

Similar results were already seen by Spitzer...

2T

Spitzer
- Najita et al. (2013)

MM

JWST/MIRI

¢
bt
i

Flux + offset (Jy)

R (SIS [ S ST

~30 -25 -20 -15 -1.0 ] ] 173 174 175  17.6
log (Mdisk/Msun) Wavelength (um)

... but the sensitivity and resolution of JWST
leads to more precise and robust measurements.

Banzatti et al. (2023)
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Summary

Topics covered:

* Protoplanetary disc evolution:
* Do discs evolve viscously or are they driven by MHD-winds?
MHD wind models maybe currently favoured

* How dust evolves
How efficient is radial drift?

e Carbon depletion in protoplanetary discs
* A mix of chemical conversion and formation of ices on large grains

* What role does radial transport play in the composition?
Combining JWST and ALMA observations will help pin down gas and dust
evolution
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