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Credit: Bill Saxton/NRAO/NSF/AUI
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Structure of a Protoplanetary Disc
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Testi et al. (2014)
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Gas Evolution: Turbulent viscosity or Winds?
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Manara et al. (PPVII)
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Gas Evolution: Viscosity…
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Fig Credit: Tabone+ (2022)

• Viscous discs spread

• Evolution slows as they age

• Produces a population of long-
lived, weakly accreting discs

• Photoevaporation opens a gap 
and terminates accretion

• Clears the disc after a few Myr
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Gas Evolution: Viscosity and photoevaporation
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Owen et al. (2011)

• Viscous discs spread

• Evolution slows as they age

• Produces a population of long-
lived, weakly accreting discs

• Photoevaporation opens a gap 
and terminates accretion

• Clears the disc after a few Myr
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Gas Evolution: Viscosity and photoevaporation
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Owen et al. (2011)

• Viscous discs spread

• Evolution slows as they age

• Produces a population of long-
lived, weakly accreting discs

• Photoevaporation opens a gap 
and terminates accretion

• Clears the disc after a few Myr

Reproduces disc lifetimes

𝛼 ≈ 3 × 10−3

X-ray driven PE
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Gas Evolution: Wind-driven evolution
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Tabone et al. (2022); Data from Fedele+ (2010)

Purely wind driven models 
can also match disc lifetimes• Evolution depends on how the magnetic 

field evolves
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Disc Sizes: A distinguishing factor?
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Trapman et al. (2022)

• Expansion of viscous discs is problematic
• Discs have low viscosity?

• Wind driven discs are a better match

BUT: 
U. Sco has as stronger radiation field. 
Are the discs affected by external photoevaporation?
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How turbulent are discs?

Richard Booth 10

Pinte et al. (2016); Pizzati et al. (2023); Dullemond et 
al. (2020); Villenave et al. (2020)

• Dust settling can be constrained via emission 
geometry

• Favours weak turbulence (𝛼 ∼ 10−4)

• Width of dust rings produces similar constraints

• CO lines in the sub-mm constrain turbulence in 
the upper layers of discs

• See nice review Rosotti (2023) for more 
constraints
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Dust mass evolution
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• Protoplanetary disc masses are 
well characterized by ALMA 
continuum observations

• Most discs are much smaller / 
less massive than the big, well-
studied discs

Ansdell et a. (2016;2017;2020);
 Barefeld et al. (2016); Williams et al. (2019); 

Ricci et al. (2010); Tazzari et al. (2021)

Spectral index measurements 
point to ~mm sized grains
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Constraints from resolved observations
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Good need high-angular resolution, 
multi-wavelength observations:
• Long wavelengths (optically thin) 

constrain grain sizes

• Short wavelengths (optically 
thick) constrain temperatures

• Must account for high optical 
depths and scattering

Sierra et al. (2021)
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Constraints from resolved observations
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Sierra et al. (2021)

Dust properties have a big 
influence on the parameters
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Dust evolution

Richard Booth 14

• Dust grains grow until they reach one the 
‘barriers to growth’:

Radial drift, bouncing, or fragmentation

Credit: Birnstiel et al.
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Dust evolution
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Lupus (1-3 Myr)U Sco (5-10 Myr)
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Disc Mass

Sellek, Booth, & Clarke (2020)

Simple dust growth models can match many 
bulk properties of discs

Model:
Grain growth
Viscous evolution
Photoevaporation
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Dust evolution
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Lupus (1-3 Myr)U Sco (5-10 Myr)

Disc Mass

Sellek, Booth, & Clarke (2020)

Simple dust growth models can match many 
bulk properties of discs

Model:
Grain growth
Viscous evolution
Photoevaporation

Rosotti et al. (2019)
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The problem with spectral indices
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Rosotti et al. (2019)

Birnstiel et al. (2010)

Spectral indices do not match:

• Large grains have been lost 
via radial drift

• Grains are too small

• Discs are too optically thin
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Role of dust trapping
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… But Discs are not smooth

Population synthesis models with and without substructures

Pinilla et al. (2012); Zormpas et al. (2022); Delussu et al. (2024)

Sub-structures help retain grains, 
keeping spectral indices low
 



UK&I Discs 2024

Signatures of unseen traps
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Scardoni et al. (2024)
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Gas Masses: Carbon depletion in discs
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CO masses are lower than 
expected from the dust masses

Andell et al. (2016)
Miotello et al. (2016,2017)

CO emission in shallow 
surveys was much 
weaker than expected
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CO depletion and C/O enhancement
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Zhang et al. (2021)
Bosman et al. (2021)

ALMA MAPS: 
Observed many lines at high angular resolution

• Radial profiles of CO depletion (factor 10-100)
• Enhanced emission from hydrocarbons: high C/O 

ratios in the gas
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Time-scale of CO depletion
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Zhang et al. (2020)

CO depletion appears after  ~1 Myr
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Coupled chemistry + transport
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Krijt et al. (2020); 
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Coupled chemistry + transport
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Krijt et al. (2020); 

Booth & Ilee (2019)
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Evidence for volatile transport
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Missing refractories accreting onto stars 
in discs with deep gaps

HD163296: Enhancement of CO inside the snow line
Due to pebble drift?

Full 
discs

Zhang et al. (2020)

Kama et al. (2016)
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Diverse inner disc chemistry with JWST

Tabone et al. (2023), van Dishoeck et al. (2023)
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GW Lup: H2O and CO2 rich; hydrocarbon poor
J120532: Hydrocarbon rich; H2O poor

• Due different conditions in the disc? 
• Or different disc compositions? 

JWST MINDS programme
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Linking inner disc chemistry to disc properties
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Banzatti et al. (2023)

H2O emission in discs is 
sensitive to disc 
properties:

• High-temperature 
emission traces disc 
accretion

• Lower-temperature 
emission correlates 
with disc size

Do small discs have 
excess water associated 
with radial drift?
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Linking inner disc chemistry to disc properties
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Banzatti et al. (2023)

Similar results were already seen by Spitzer…

Spitzer
Najita et al. (2013)

... but the sensitivity and resolution of JWST 
leads to more precise and robust measurements.

Spitzer/IRS

JWST/MIRI
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Summary
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Topics covered:

• Protoplanetary disc evolution:
• Do discs evolve viscously or are they driven by MHD-winds?
 MHD wind models maybe currently favoured

• How dust evolves
 How efficient is radial drift?

• Carbon depletion in protoplanetary discs
• A mix of chemical conversion and formation of ices on large grains

• What role does radial transport play in the composition?
Combining JWST and ALMA observations will help pin down gas and dust 
evolution
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